Exercise 4

Find the linearization $L(x)$ of the function at a.

$$
f(x)=2^{x}, \quad a=0
$$

Solution

Start by finding the corresponding y-value to $x=0$.

$$
f(0)=2^{0}=1
$$

Then find the slope of the tangent line to the function at $x=0$ by computing $f^{\prime}(x)$,

$$
\begin{aligned}
f^{\prime}(x) & =\frac{d}{d x}\left(2^{x}\right) \\
& =\frac{d}{d x}\left(e^{\ln 2^{x}}\right) \\
& =\frac{d}{d x}\left(e^{x \ln 2}\right) \\
& =e^{x \ln 2} \cdot \frac{d}{d x}(x \ln 2) \\
& =e^{x \ln 2} \cdot(\ln 2),
\end{aligned}
$$

and plugging in $x=0$.

$$
f^{\prime}(0)=e^{0} \cdot(\ln 2)=\ln 2
$$

Now use the point-slope formula to obtain the equation of the line going through $(0,1)$ with slope $\ln 2$.

$$
\begin{gathered}
y-f(0)=f^{\prime}(0)(x-0) \\
y-1=(\ln 2) x \\
y=(\ln 2) x+1
\end{gathered}
$$

Therefore, the linearization of the function $f(x)$ at $a=0$ is

$$
L(x)=(\ln 2) x+1 .
$$

Below is a plot of the function and the linearization at $a=0$ versus x.

